
U
N

IV
E

R
S

ID
A

D
 N

AC I O N A L P E DR
O

 R
U

I Z
 G

A
L

L
O

L A M B A Y E Q U
E

Peruvian Computing Society (SPC)
School of Computer Science

Sillabus 2022-I

1. COURSE
CS111. Computing Foundations (Mandatory)

2. GENERAL INFORMATION
2.1 Credits : 4
2.2 Theory Hours : 2 (Weekly)
2.3 Practice Hours : 2 (Weekly)
2.4 Duration of the period : 16 weeks
2.5 Type of course : Mandatory
2.6 Modality : Face to face
2.7 Prerrequisites : None

3. PROFESSORS

Meetings after coordination with the professor

4. INTRODUCTION TO THE COURSE
This is the first course in the sequence of introductory courses to Computer Science.This course is intended to cover the
concepts outlined by the Computing Curricula IEEE-CS/ACM 2013. Programming is one of the pillars of Computer
Science; any professional of the area, will need to program to materialize their models and proposals. This course
introduces participants to the fundamental concepts of this art. Topics include data types, control structures, functions,
lists, recursion, and the mechanics of execution, testing, and debugging.

5. GOALS

• Introduce the fundamental concepts of programming.

• Develop the ability of abstraction using programming language

6. COMPETENCES

a) An ability to apply knowledge of mathematics, science. (Usage)

b) An ability to design and conduct experiments, as well as to analyze and interpret data. (Usage)

d) An ability to function on multidisciplinary teams. (Usage)

7. SPECIFIC COMPETENCES

a10) Make a computational analysis that allows calculating the execution time of a given algorithm.

a11) Use mathematical techniques that allow to delimit sums and to solve recurrences that reflect the computational
costs of an algorithm.

b1) Apply computational thinking effectively to the solution of everyday problems

d1) Collaborative software development using code repositories and version management (e.g., Git, Bitbucket, SVN)

8. TOPICS

1

Unit 1: History (5)
Competences Expected: a
Topics Learning Outcomes

• Prehistory, the world before 1946

• History of computer hardware, software, networking

• Pioneers of computing

• History of the Internet

• Identify significant continuing trends in the history
of the computing field [Familiarity]

• Identify the contributions of several pioneers in the
computing field [Familiarity]

• Discuss the historical context for several program-
ming language paradigms [Familiarity]

• Compare daily life before and after the advent of
personal computers and the Internet [Assessment]

Readings : [BB19], [Gut13], [Zel10]

Unit 2: Basic Type Systems (2)
Competences Expected: a
Topics Learning Outcomes

• A type as a set of values together with a set of op-
erations

– Primitive types (e.g., numbers, Booleans)

– Compound types built from other types (e.g.,
records, unions, arrays, lists, functions, refer-
ences)

• Association of types to variables, arguments, results,
and fields

• Type safety and errors caused by using values incon-
sistently given their intended types

• For both a primitive and a compound type, infor-
mally describe the values that have that type [Fa-
miliarity]

• For a language with a static type system, describe
the operations that are forbidden statically, such as
passing the wrong type of value to a function or
method [Familiarity]

• Describe examples of program errors detected by a
type system [Familiarity]

• For multiple programming languages, identify pro-
gram properties checked statically and program
properties checked dynamically [Usage]

• Use types and type-error messages to write and de-
bug programs [Usage]

• Define and use program pieces (such as functions,
classes, methods) that use generic types, including
for collections [Usage]

Readings : [Gut13], [Zel10]

2

Unit 3: Fundamental Programming Concepts (9)
Competences Expected: a
Topics Learning Outcomes

• Basic syntax and semantics of a higher-level language

• Variables and primitive data types (e.g., numbers,
characters, Booleans)

• Expressions and assingments

• Simple I/O including file I/O

• Conditional and iterative control structures

• Functions and parameter passing

• The concept of recursion

• Analyze and explain the behavior of simple programs
involving the fundamental programming constructs
variables, expressions, assignments, I/O, control con-
structs, functions, parameter passing, and recursion.
[Assessment]

• Identify and describe uses of primitive data types
[Familiarity]

• Write programs that use primitive data types [Usage]

• Modify and expand short programs that use stan-
dard conditional and iterative control structures and
functions [Usage]

• Design, implement, test, and debug a program that
uses each of the following fundamental programming
constructs: basic computation, simple I/O, standard
conditional and iterative structures, the definition of
functions, and parameter passing [Usage]

• Write a program that uses file I/O to provide persis-
tence across multiple executions [Usage]

• Choose appropriate conditional and iteration con-
structs for a given programming task [Familiarity]

• Describe the concept of recursion and give examples
of its use [Assessment]

• Identify the base case and the general case of a
recursively-defined problem [Familiarity]

Readings : [Gut13], [Zel10]

Unit 4: Basic Analysis (2)
Competences Expected: a,b
Topics Learning Outcomes

• Differences among best, expected, and worst case be-
haviors of an algorithm

• Big O notation: formal definition

• Complexity classes, such as constant, logarithmic,
linear, quadratic, and exponential

• Big O notation: use

• Analysis of iterative and recursive algorithms

• Explain what is meant by “best”, “expected”, and
“worst” case behavior of an algorithm [Familiarity]

• In the context of specific algorithms, identify the
characteristics of data and/or other conditions or as-
sumptions that lead to different behaviors [Familiar-
ity]

• State the formal definition of big O [Familiarity]

• Use big O notation formally to give asymptotic up-
per bounds on time and space complexity of algo-
rithms [Usage]

• Use big O notation formally to give expected case
bounds on time complexity of algorithms [Usage]

Readings : [Gut13], [Zel10]

3

Unit 5: Fundamental Data Structures and Algorithms (8)
Competences Expected: a,b
Topics Learning Outcomes

• Simple numerical algorithms, such as computing the
average of a list of numbers, finding the min, max,

• Sequential and binary search algorithms

• Worst case quadratic sorting algorithms (selection,
insertion)

• Worst or average case O(N log N) sorting algorithms
(quicksort, heapsort, mergesort)

• Hash tables, including strategies for avoiding and re-
solving collisions

• Binary search trees

– Common operations on binary search trees such
as select min, max, insert, delete, iterate over
tree

• Graphs and graph algorithms

– Representations of graphs (e.g., adjacency list,
adjacency matrix)

– Depth- and breadth-first traversals

• Heaps

• Graphs and graph algorithms

– Maximum and minimum cut problem

– Local search

• Pattern matching and string/text algorithms (e.g.,
substring matching, regular expression matching,
longest common subsequence algorithms)

• Implement basic numerical algorithms [Usage]

• Implement simple search algorithms and explain the
differences in their time complexities [Assessment]

• Be able to implement common quadratic and O(N
log N) sorting algorithms [Usage]

• Describe the implementation of hash tables, includ-
ing collision avoidance and resolution [Familiarity]

• Discuss the runtime and memory efficiency of prin-
cipal algorithms for sorting, searching, and hashing
[Familiarity]

• Discuss factors other than computational efficiency
that influence the choice of algorithms, such as
programming time, maintainability, and the use of
application-specific patterns in the input data [Fa-
miliarity]

• Explain how tree balance affects the efficiency of var-
ious binary search tree operations [Familiarity]

• Solve problems using fundamental graph algorithms,
including depth-first and breadth-first search [Usage]

• Demonstrate the ability to evaluate algorithms, to
select from a range of possible options, to provide
justification for that selection, and to implement the
algorithm in a particular context [Assessment]

• Describe the heap property and the use of heaps as
an implementation of priority queues [Familiarity]

• Solve problems using graph algorithms, including
single-source and all-pairs shortest paths, and at
least one minimum spanning tree algorithm [Usage]

• Trace and/or implement a string-matching algo-
rithm [Usage]

Readings : [Gut13], [Zel10]

4

Unit 6: Algorithms and Design (9)
Competences Expected: a,b
Topics Learning Outcomes

• The concept and properties of algorithms

– Informal comparison of algorithm efficiency
(e.g., operation counts)

• The role of algorithms in the problem-solving process

• Problem-solving strategies

– Iterative and recursive mathematical functions

– Iterative and recursive traversal of data struc-
tures

– Divide-and-conquer strategies

• Fundamental design concepts and principles

– Abstraction

– Program decomposition

– Encapsulation and information hiding

– Separation of behaivor and implementation

• Discuss the importance of algorithms in the problem-
solving process [Familiarity]

• Discuss how a problem may be solved by multiple
algorithms, each with different properties [Familiar-
ity]

• Create algorithms for solving simple problems [Us-
age]

• Use a programming language to implement, test, and
debug algorithms for solving simple problems [Usage]

• Implement, test, and debug simple recursive func-
tions and procedures [Usage]

• Determine whether a recursive or iterative solution
is most appropriate for a problem [Assessment]

• Implement a divide-and-conquer algorithm for solv-
ing a problem [Usage]

• Apply the techniques of decomposition to break a
program into smaller pieces [Usage]

• Identify the data components and behaviors of mul-
tiple abstract data types [Usage]

• Implement a coherent abstract data type, with loose
coupling between components and behaviors [Usage]

• Identify the relative strengths and weaknesses among
multiple designs or implementations for a problem
[Assessment]

Readings : [Gut13], [Zel10]

Unit 7: Development Methods (1)
Competences Expected: a,b
Topics Learning Outcomes

• Modern programming enviroments

– Code search

– Programming using library components and
their APIs

• Construct and debug programs using the standard
libraries available with a chosen programming lan-
guage [Familiarity]

Readings : [Gut13], [Zel10]

9. WORKPLAN
9.1 Methodology
Individual and team participation is encouraged to present their ideas, motivating them with additional points in the

different stages of the course evaluation.
9.2 Theory Sessions
The theory sessions are held in master classes with activities including active learning and roleplay to allow students

to internalize the concepts.

5

9.3 Practical Sessions
The practical sessions are held in class where a series of exercises and/or practical concepts are developed through

problem solving, problem solving, specific exercises and/or in application contexts.

10. EVALUATION SYSTEM
********* EVALUATION MISSING ********

11. BASIC BIBLIOGRAPHY

[BB19] J. Glenn Brookshear and Dennis Brylow. Computer Science: An Overview. Ed. by PEARSON. Global Edition.
Pearson, 2019. isbn: 1292263423. url: http://www.pearsonhighered.com/brookshear.

[Gut13] John V Guttag. . Introduction To Computation And Programming Using Python. MIT Press, 2013.

[Zel10] John Zelle. Python Programming: An Introduction to Computer Science. Franklin, Beedle & Associates Inc, 2010.

6

